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Mathematics / Physics 

Epistemological reflections on foundational scientific principles become pivotal in the reformative 
development of specific branches of the sciences.  The methodological adjustments that accompany 
such critical circumstances in the unfolding of scientific knowledge necessitate a reclassification of 
established concepts by way of accommodating novel theoretical hypotheses or emergent conceptual 
constructs.  Progress within a given scientific discipline depends at times on radical reforms in 
methodology, which result in rethinking the epistemic models that are shared with other branches in 
science.  To elucidate these dialectical dimensions in the evolution of innovative scientific 
rationalities, this study considers the phenomenon of ‘the mathematisation of physics’ in the context 
of history of the exact sciences in classical Islamic civilisation.  This line of inquiry is specifically 
focused on the 11th century geometrical conception of space by the polymath al-Hasan ibn al-
Haytham (Alhazen; d. ca. 1041 CE) and his refutation of Aristotle’s physical definition of place.1 

Mathematical Space 

Ibn al-Haytham’s geometrical conception of place (al-makan) as ‘a mathematical spatial extension’ 
was established in his Discourse on Place (Qawl fi al-makan),2 which also rested on geometric 
demonstrations that grounded his rejection of the definition of topos (place) in Book Delta (IV) of 
Aristotle’s Physics.   

Ibn al-Haytham endeavoured to present his geometrical conception of al-makan (place) as a solution 
to a longstanding problem that remained philosophically unresolved, which, to our knowledge, 
constituted in its own right the first viable attempt to mathematise ‘place’ in history of science. 

Ibn al-Haytham aimed primarily at promoting his geometrical conception of place as ‘spatial 
extension’ in an attempt to address selected mathematical problems that emerged in reference to 
unprecedented developments in geometrical transformations (al-naql; like similitude, translation, 
homothety, affinity), the introduction of motion (al-haraka; kinesis) in geometry, the use of geometric 
projections in spherics, and the anaclastic properties of conic, cylindrical, and spherical sections; all 
undertaken within the 9th-10th century prolongations of the Apollonian-Archimedean legacy in 
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mathematics — To mention in this context the research of polymaths of the calibre of the Banu Musa, 
Thabit ibn Qurra, Ibrahim ibn Sinan, al-Khazin, al-Quhi, al-Sijzi, and Ibn Sahl. 

Besides the epistemic tendency to offer mathematical solutions to problems in theoretical philosophy, 
Ibn al-Haytham’s endeavour in geometrising place was undertaken in view of grounding his own 
research in mathematical analysis and synthesis (al-tahlil wa-al-tarkib; with implications on the 
development of infinitesimal mathematics),3 and in support of his studies on knowable mathematical 
entities (al-ma‘lumat).  Ibn al-Haytham also aimed at reorganising most of the notions of geometry 
and rethinking them anew in terms of motion, and by way of positing an abstract spatial domain that 
receives geometrical transformations.4  Consequently, he had to critically reassess the dominant 
philosophical conceptions of place in his age, which were encumbered by inconclusive theoretical 
disputes that were principally developed in reaction to Aristotle’s Physics. 

Physical Place 

Aristotle defined topos (place) as: ‘the innermost primary surface-boundary of the containing body 
that is at rest, and is in contact with the outermost surface of the mobile contained body’ (Physics, IV, 
212a 20-21).5  The makan of the Aristotelian falasifa or hukama’ consisted of a sath muhit or sath 
hawi (a surrounding surface or a containing enveloping boundary). 

In contesting this physical conception of topos, Ibn al-Haytham posited al-makan as a postulated void 
(khala’ mutakhayyal), whose existence is secured in the imagination, like it is the case with invariable 
geometrical entities.  He also held that this ‘postulated void’ consisted of imagined immaterial 
distances that are between the opposite points of the surfaces surrounding it.  He furthermore noted 
that the imagined distances of a given body, and those of its containing place, get superposed and 
united in such a way that they become the same distances as mathematical lines having lengths 
without widths. 

Ibn al-Haytham’s geometrical conception of place as a relational extension was ‘ontologically’ 
neutral.6  His mathematical notion of al-makan was not simply obtained through a ‘theory of 
abstraction’ as such, nor was it derived by way of a ‘doctrine of forms’, nor was it grasped as being 
the (phenomenal) ‘object’ of ‘immediate experience’ or ‘common sense’.  Rather, his geometrised 
place resulted from a mathematical isometric ‘bijection’ function between two sets of relations or 
distances.7 Nothing is thus retained of the properties of a body other than extension, which consists of 
mathematical distances.  Accordingly, the makan of a given object is a ‘region of extension’ that is 
defined by the distances between its points, on which the distances of that object can be applied 
‘bijectively’.8 

It is worth noting here that Aristotle’s definition of place received bold classical critiques in the 
commentaries on his work, including the objections raised by Philoponus in defence of the conception 
of topos as interval (diastasis; diastema).9  However, what primarily distinguishes Ibn al-Haytham 
from his predecessors is that his critique of Aristotle was mathematical, and, that it was partly 
auxiliary to his own response to the epistemic need to geometrise place, while those who came before 
him restricted their objections to the Aristotelian notion of topos within the domain of philosophical 
deliberations in classical physics. 

Geometrical Demonstrations 

To offer some highlights of Ibn al-Haytham’s geometrical demonstrations in rejecting Aristotle’s 
definition of topos, let us consider the case of a parallelepiped (mutawazi al-sutuh; a geometric solid 
bound by six parallelograms) that occupies a given place delimited by the surfaces enclosing it.  If 
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that parallelepiped were to be divided into two parts by a plane that is parallel to one of its surfaces, 
and is then recomposed, the cumulative size of the parts resulting from its partition would be equal to 
the magnitude of that parallelepiped prior to being divided, while the total sum of the surface areas of 
the parts would be greater than that of the parallelepiped prior to its division.  Following the 
Aristotelian definition, and in reference to this partitioned parallelepiped, one would conclude that: an 
object divided into two parts occupies a place that is larger than the one it occupied prior to its 
division.  Hence, ‘the place of a given body increases while that body does not, and an object of a 
given magnitude is contained in unequal places’; which is an untenable proposition.10 

Likewise, if we consider the case of a parallelepiped that we carve with carefully selected geometrical 
shapes, we would diminish its bodily magnitude while the total sum of its surface areas would 
increase.  Following the Aristotelian definition, and in reference to this carved parallelepiped, one 
would conclude that: ‘an object that diminishes in size occupies a larger place prior to its diminution 
in magnitude’; which constitutes an indefensible thesis.  Moreover, using mathematical 
demonstrations, in reference to geometrical solids of equal surface-areas, which are based on studies 
conducted on figures that are of equal perimeters, Ibn al-Haytham demonstrated that ‘the sphere is the 
largest in size with respect to all other solids that have equal areas of their enveloping surfaces’ (al-
kura a‘zam al-ashkal al-lati ihatatuha mutasawiya).  Ultimately, the volumetric magnitude of 
geometric solids remains the same despite changes in their shape (like when modelling a given piece 
of wax into the shape of a sphere, and then giving it the form of a cylinder, the quantifications of its 
material volume and the magnitude of its spatial extension remain the same, while its total surface 
area diminishes when it is transformed from a spherical shape into a cylindrical one). 

The geometrical place of a given object is posited as a ‘metric’ of a region of ‘mathematical space’, 
which is occupied by a given body that is conceived extensionally, and corresponds with its own 
geometrical place by way of ‘isometric bijection’.  The epistemological and historical validity of Ibn 
al-Haytham’s geometrisation of place was ultimately confirmed in the maturation of mathematics and 
science in the 17th century conceptions of extension qua space; particularly in reference to the works 
of Descartes and Leibniz.11  Furthermore, the prolongations of Euclidean geometry benefited from the 
geometrisation of place, which among other developments resulted in the emergence of what came to 
be known in periods following Ibn al-Haytham’s age as: ‘Euclidean space’; namely, an appellation 
that is coined in relatively modern times, and describes a notion that is historically posterior to the 
geometry of figures as embodied in Euclid’s Elements (Kitab Uqlidis fi al-usul).12  After all, the term 
deployed by Euclid that is closest to a notion of ‘space’ (espace; Raum), as expressed in the Greek 
appellation: ‘Khora’, is: ‘Khorion’ (Data, Prop. 55; Elements VI, Prop. 25), which designates ‘an area 
enclosed within the perimeter of a specific geometric abstract figure’.13 

Philosophical Critique 

Ibn al-Haytham’s conception of place was eventually criticised by the Aristotelian philosopher ‘Abd 
al-Latif al-Baghdadi (fl. 13th cent.) in a treatise titled: Fi al-radd ‘ala Ibn al-Haytham fi al-makan 
(which consisted of an attempted refutation of Ibn al-Haytham’s geometrical definition of place).14 

Baghdadi argued that Ibn al-Haytham did not logically account for a correspondence/concomitance 
between a given object and its ‘place’ (qua ‘enveloping surfaces’) as both being subject to change.15  
If a given object changes by way of division/partition and/or diminution in size, its place changes as 
well, due to the transformation of its shape and its associated surface areas.  To explore this 
proposition, let us reconsider the case of the parallelepiped which was divided and/or carved; in both 
instances it has been transformed in its shape and associated surfaces, hence its place changed as well.  
If a divided object becomes two distinct entities, then its shape is likewise transformed into two 
separate shapes, and its original place is transmuted into two different places with distinct surface 
areas.  The fact that the parallelepiped is divided or carved entails that it is no longer the same entity 
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that it was prior to its division or carving; and so is the case with its place, shape and the total sum of 
its surface areas, which get transformed into something else.  According to Baghdadi, Ibn al-
Haytham’s geometrical proofs neglected the fact that a change in a given object leads to a 
transformation in its shape, the total sum of its surface areas, and the place it occupies.  Failing to 
recognise that the parallelepiped becomes something other than itself, when partitioned or carved, 
results in neglecting the fact that its shape, place, and the total sum of its surface areas are also 
transformed.  It is hence valid to say that an object occupies a different place when it is divided and/or 
carved, given that it is no longer the same object per se, but is rather transformed into another sort of 
entity. 

In all of this, Baghdadi presupposed philosophical accounts of the individuation of bodies as a 
modality by virtue of which he attempted to offer counterexamples to Ibn al-Haytham’s geometrical 
demonstrations, while also erroneously assuming that the latter’s propositions were reducible to one 
and the same type of arguments.  Moreover, Baghdadi wondered how the actual distances (bi-al-fi‘l) 
of a given body are superposed and united with the imagined potential distances (bi-al-quwwa) of its 
place.  He was unsure whether Ibn al-Haytham considered the distances of a body and those of its 
place as being potentialities and not actualities; hence positing them as non-existents.  He furthermore 
rejected the claim that the presumably ‘superposed distances’ (al-ab‘ad al-mutatabiqa) can be actual 
existents, since this implies a co-penetration of material entities;16 hence failing to recognise the 
epistemic entailments of Ibn al-Haytham’s mathematisation of place as geometric extension. 

Baghdadi asserted also that the mathematician judges distances insofar that they are imagined in the 
mind as being abstracted from matter (mutakhayyala fi al-dhihn), while the physicist grasps them as 
existing externally (mawjuda fi al-kharij).  Yet, the difference between the research of the physicist 
and that of the mathematician did not only reflect a binary contrast between an Aristotelian 
metaphysics/physics and a Platonist theory of forms, it rather pointed also to a ‘third’ classical 
tradition that was ‘Archimedean’, which was not satisfied with the mere philosophical cognition of 
‘natural phenomena’, but essentially aimed at investigating them mathematically.  It is this third 
epistemic pathway that inspired Ibn al-Haytham’s ‘geometrisation of place’ and embodied his 
scientific reform in ‘mathematising physics’. 
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